A large deviation principle for Dirichlet posteriors

نویسندگان

  • A. J. Ganesh
  • Neil O’Connell
چکیده

Let Xk be a sequence of independent and identically distributed random variables taking values in a compact metric space Ω, and consider the problem of estimating the law of X1 in a Bayesian framework. A conjugate family of priors for non-parametric Bayesian inference is the Dirichlet process priors popularized by Ferguson. We prove that if the prior distribution is Dirichlet, then the sequence of posterior distributions satisfies a large deviation principle, and give an explicit expression for the rate function. As an application, we obtain an asymptotic formula for the predictive probability of ruin in the classical gambler’s ruin problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A large deviation principle for Dirichlet posteriorsA

Let X k be a sequence of independent and identically distributed random variables taking values in a compact metric space , and consider the problem of estimating the law of X 1 in a Bayesian framework. A conjugate family of priors for non-parametric Bayesian inference is the Dirichlet process priors popularized by Ferguson. We prove that if the prior distribution is Dirichlet, then the sequenc...

متن کامل

Asymptotic Behavior of the Poisson – Dirichlet Distribution for Large Mutation Rate

The large deviation principle is established for the Poisson–Dirichlet distribution when the parameter θ approaches infinity. The result is then used to study the asymptotic behavior of the homozygosity and the Poisson–Dirichlet distribution with selection. A phase transition occurs depending on the growth rate of the selection intensity. If the selection intensity grows sublinearly in θ, then ...

متن کامل

Asymptotic Results for the Two-parameter Poisson-Dirichlet Distribution

The two-parameter Poisson-Dirichlet distribution is the law of a sequence of decreasing nonnegative random variables with total sum one. It can be constructed from stable and Gamma subordinators with the two-parameters, α and θ, corresponding to the stable component and Gamma component respectively. The moderate deviation principles are established for the two-parameter Poisson-Dirichlet distri...

متن کامل

A PRELUDE TO THE THEORY OF RANDOM WALKS IN RANDOM ENVIRONMENTS

A random walk on a lattice is one of the most fundamental models in probability theory. When the random walk is inhomogenous and its inhomogeniety comes from an ergodic stationary process, the walk is called a random walk in a random environment (RWRE). The basic questions such as the law of large numbers (LLN), the central limit theorem (CLT), and the large deviation principle (LDP) are ...

متن کامل

A Bayesian Review of the Poisson-Dirichlet Process

The two parameter Poisson-Dirichlet process is also known as the PitmanYor Process and related to the Chinese Restaurant Process, is a generalisation of the Dirichlet Process, and is increasingly being used for probabilistic modelling in discrete areas such as language and images. This article reviews the theory of the Poisson-Dirichlet process in terms of its consistency for estimation, the co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007